Immediate Differentiation of Unusual Seed Oils by Easy Ambient Sonic-Spray Ionization Mass Spectrometry

<u>Paulo R. R. Mesquita^{2,3}</u> (PG), Fábio N. dos Santos¹ (PG), Jandyson M. Santos¹ (PG), Karla B. Oliveira^{2,3} (PG), Frederico M. Rodrigues³ (PQ), Wilson A. Lopes^{2,4} (PQ), Marcos N. Eberlin^{1,*} (PQ). * eberlin@iqm.unicamp.br

¹ ThoMSon Mass Spectrometry Laboratory, State University of Campinas, Institute of Chemistry, Campinas, São Paulo, 13083-970, Brazil; ² Federal University of Bahia, Campus Ondina, Institute of Chemistry, 40170290, Salvador, Bahia, Brazil; ³ Empresa Baiana de Desenvolvimento Agrícola S.A, 40170-110, Salvador, Bahia, Brazil; ⁴ INCT de Energia e Ambiente, UFBA, 40170-290, Salvador, BA, Brazil.

Keywords: Vegetables oils, Triacylglycerides, EASI-MS.

Abstract

We describe herein the immediate and low cost characterization of nine seed oils via TAGs profiles by EASI-MS.

Introduction

Here we show that EASI(+)-MS offers indeed a powerful immediate tool able to characterize and differentiate unusual seed oils obtained from *Jatropha curcas* (JC), *Bombacopsis glabra* (BG), *Capparis flexuosa* (CF), *Siparuna guianensis* (SG), *Moringa oleifera* (MO), *Hibiscus tiliaceus* (HT), *Virola bicuhyba* (VB), *Pouteria caimito* (PC) and *Syagrus coronate* (SC). The oils were found to display quite contrasting TAG profiles, which provide important information for their quality control and potential applications in biofuels and foods.

Results and Discussion

Oils were extracted by the Soxhlet method from 5g of ground seeds using 230 mL of ethyl ether heated at 65°C for 4 h. The crude samples (2 μ L) were dropped on a paper surface and EASI-MS data were acquired in a single quadrupole for over 30 s, initially scanning over the range of *m*/*z* 200-1200. The EASI source in house-fabricated was operated with methanol flow rate of 20 μ L min⁻¹ and 3 L min⁻¹ for the nebulizing gas (N₂).¹ Fig. 1 shows, as an example, the EASI(+)-MS distinct profiles of TAGs from *V. bicuhyba* and *S. coronata*.

Figura 1. EASI(+)-MS analysis fingerprinting seed oils of a) *V. bicuhyba* and b) *S. coronata*.

Table 1 shows the TAG compositions revealed by such $[TAG + Na]^+$ profiles.

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

Table 1.	[TAG + Na] ⁺	ions and	relative	abundance
(%) detect	ted via EASI(+)-MS for	the oils.	

$[TAG + Na]^+$	TAG	CF	JC	HT	мо	BG	SG	PC	VB	SC
m/z										
605	LaCaCa	-	-	-	-	-	-	-	-	100
633	LaLaCa	-	-	-	-	-	-	-	-	93.1
689	LaLaM	-	-	-	-	-	-	-	6.6	66.8
717	LaLaP	-	-	-	-	-	-	-	40.9	26.1
743	LaLaO	-	-	-	-	-	-	-	100	28.7
745	LaLaS	-	-	-	-	-	-	-	47.9	17.4
771	MMPo	-	-	-	-	-	-	-	33.3	17.6
773	MMP	-	-	-	-	-	-	-	10.2	5.5
799	MMO	-	-	-	-	-	-	-	9.9	10.2
825	PPoPo	-	-	-	-	-	-	-	5.8	11.4
829	PPP	5.7	-	-	-	-	-	-	-	-
853	PPL	43.6	-	55.1	-	80.8	48.3	30.8	-	6.3
855	PPO	55.4	8.2	12.9	-	100	53.4	53.3	-	-
877	PLL/POLn	32.6	41.4	100	-	-	35.6	12.8	-	-
879	PLO/PSLn	53.2	54.2	67.4	12.1	13.3	71.1	49.2	-	5.8
881	POO/PSL	100	43.4	18.6	24.9	32.4	100	100	-	9.1
883	PSO	33.0	13.8	-	10.1	75.0	40.8	26.8	-	-
901	LLL/OLLn	-	28.8	42.5	-	-	-	7.2	-	-
903	OLL/OOLn	-	94.7	46.5	-	-	12.6	9.9	-	-
905	OOL/SLL	25.4	100	37.8	-	12.4	35.1	34.9	-	7.5
907	000/SL0	45.1	94.6	-	100	27.9	57.7	55.3	-	8.5
909	SOO/SSL	25.5	44.9	-	44.4	38.4	50.7	31.3	-	-
911	SSO	-	-	-	9.5	15.6	17.7	7.5	-	-
935	ALO	-	10.1	9.1	18.1	-	-	-	-	-
937	SAL/AOO	-	9.5	-	19.0	12.5	10.4	-	-	-
939	SAO	11.4	5.25	-	-	-	-	-	-	-
965	AAL	-	-	-	11.0	-	-	-	-	-
967	AAO	-	-	-	6.0	-	-	-	-	-
969	AAS	-	-	-	-	-	-	-	-	-

Note that all oils display predominance of TAG composed by palmitic (P), oleic (O), stearic (S) and linoleic (L) acids. But two exceptions were found for the *V. bicuhyba* and *S. coronata* seed oils, which are composed mainly by TAG containing lauric acid (La). To evaluate the performance of the EASI-MS technique to discriminate the different types of vegetable oils in terms of their TAG profiles, PCA and HCA were applied.

Conclusions

EASI(+)-MS profiles of TAGs constituents provide immediate typification and differentiation of oils and can be obtained in a quite direct and rapid fashion.

Acknowledgments

CNPq, FAPESP, FAPESP and CAPES for financial support.

¹ Haddad, R.; Sparrapan, R.; Eberlin, M. N. Rapid Commun.Mass Spectrom. 2006, 20, 2901.